### 1<sup>st</sup> Report

# Predicting city growth with machine learning

Simon Buechler, Anne Thompson, Dongxiao Niu, David Maroti



## Strategic Background

## **Location Quotient**

## Machine Learning Tools

Results

Summary



Project is structured in a two-stage analysis:

- Identify which Chinese and US cities will grow in population and what drives this growth
- Analyze the link between the city's growth potential and commercial and residential real estate prices
- In the first stage we:
  - Investigate the link between city growth, industry growth, transportation infrastructure, human capital, entrepreneurship, and amenities
  - We use the most recent machine learning models to predict city growth and causally identify the main drivers



## **City Growth Projection |** Defining the Location Quotient (LQ)

- The higher the LQ the greater the significance of this industry for the export base of the city
- Cities with high LQ's in growing industries are expected to grow the most
- LQ>1: city-level industry growth rate > national growth rate

![](_page_4_Picture_4.jpeg)

### China LQ (1) Information Communication, Computer Service & Software

![](_page_5_Figure_1.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_6_Figure_1.jpeg)

China LQ (3) Finance & Insurance

![](_page_7_Figure_1.jpeg)

## US LQ (1) Healthcare and Social Assistance

![](_page_8_Figure_1.jpeg)

## US LQ (2) Professional, Scientific and Technical Services

![](_page_9_Figure_1.jpeg)

## **City Growth Projection |** Machine Learning Parameters (1)

- Machine learning constructs algorithms that can learn from the data
- **Big data** can come in two forms:
  - Wide (high-dimensional) data:
    - Many predictors (large p) and relatively small N
    - Typical method: Regularized regression
  - Tall or long data:
    - Many observations, but only few predictors
    - Typical method: Tree-based methods

- ✓ Wide Data: Many city growth drivers for a relatively small amount of cities
- Regularized regression: Method for selecting and fitting predictors that appear in a model

## **City Growth Projection |** Machine Learning Parameters (2)

- Supervised Machine Learning: You have an outcome Y and predictors X
  - Classical ML setting: independent observations
  - You fit the model Y that you want to predict using unseen data X0
- Unsupervised Machine Learning:
  - No pre-existing labels, undetected patterns
  - Dimension reduction: reduce the complexity of your data
  - Can be used to generate inputs (features) for supervised learning (e.g. Principal component regression)

#### ✓ Supervised Machine Learning

- Focus on prediction
- Typical problems:
  - Netflix: predict user-rating of films
  - Predicting city growth
- Procedure: Algorithm is trained and validated using "unseen" data
- Strengths: Out-of-sample prediction, highdimensional data, data-driven model selection

## City Growth Projection | Regression Model

#### "Changes on levels" regression:

 $\Delta_{t+1,t} \log N_i = \lambda \beta_0 - \lambda \log N_{it} - \lambda \beta_I \log D_i + \epsilon_{it}$ 

#### **Key Components**

- We do not know the true model. Which regressors are important?
- How many regressors to include?
  - Including too many regressors leads to overfitting: good in-sample fit (high R2), but bad out-of-sample prediction
  - Including too few regressors leads to omitted variable bias

Wide data adds complexity & makes model selection even more challenging

## City Growth Projection | Estimation Methods

| <ul> <li>Regularized regression removes some predictors from<br/>the model (i.e., forcing some coefficients to be zero) by<br/>choosing the penalization level lambda</li> </ul> | OLS: include all regressors and minimizes mean                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Relevant predictors can be chosen with cross-validation<br/>(CV)</li> </ul>                                                                                             | square errors                                                                                                                                                                                     |
| <ul> <li>CV is a generalization where the data is iteratively split in<br/>training and validation sample</li> </ul>                                                             | <ul> <li>LASSO: Least Absolute Shrinkage and Selection<br/>Operator - (Tibshirani 1996) with penalty level<br/>(lambda) selected by information criteria EBIC<br/>(Chen and Chen 2008)</li> </ul> |
| <ul> <li>CV selects the lambda (penalization) that minimizes an estimate of the out-of-sample prediction error</li> </ul>                                                        |                                                                                                                                                                                                   |

## Parameters of analysis | Variables Embedded into China's Growth Model

| Transportation Infrastructure                                                                    | Industry Growth                                           | Entrepreneurship           |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|--|
| <ul> <li>Kilometers of bus lanes per capita</li> <li>Kilometers of highway per-capita</li> </ul> | <ul> <li>Growth in 20 different<br/>industries</li> </ul> | Number of firms per-capita |  |

| Human Capital                                                                                                                       | Amenities                                                  | Output                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <ul> <li>Number of colleges</li> <li>Share of highly-educated population</li> <li>Share of median income</li> <li>Patent</li> </ul> | <ul><li>Days of snow</li><li>Number of hospitals</li></ul> | <ul> <li>GDP per capita</li> <li>Disposable income</li> <li>Government Income</li> </ul> |

## Parameters of analysis | Variables Embedded into China's Growth Model

|                  | Factors                            | 2 years | 5 years | 10 years |           | Factors         | 2 years | 5 years | 10 years |
|------------------|------------------------------------|---------|---------|----------|-----------|-----------------|---------|---------|----------|
| Output           | GDP per Capita                     | +       | +       | +        |           | Roads           |         |         | +        |
|                  | Disposable Income                  |         |         | -        |           | Taxi            |         | +       | +        |
| Human<br>Capital | Patents                            | +       |         | +        | Amenities | Days of Fog     |         |         | +        |
|                  | College                            |         | +       | +        |           | Days of Storm   |         |         | +        |
|                  | Share of Median                    |         |         | -        |           | Precipitation   |         |         | +        |
|                  | Income                             |         |         |          |           | Max Temperature |         | +       |          |
| Employment       | Information &<br>Computer          | +       |         |          |           | Temperature     |         | +       |          |
|                  | Household Service                  |         | +       |          |           | Hospitals       |         |         | +        |
|                  | R&D                                | +       | +       |          |           | Hospital Beds   |         |         | +        |
|                  | Transportation Storage             |         |         | +        |           | Bus             |         | +       | -        |
|                  | and post                           |         |         |          |           | Doctors         |         |         | -        |
|                  | Real Estate                        | +       | +       | +        |           | Days of Frost   | -       |         |          |
|                  | Accommodation and<br>Catering      |         |         | -        |           | Days of Snow    |         | -       |          |
|                  | Leasing and Business<br>Services   |         |         | -        |           |                 |         |         |          |
|                  | Manufacturing                      |         |         | -        |           |                 |         |         |          |
|                  | Water, Conservancy,<br>Environment |         |         | -        |           |                 |         |         |          |

![](_page_16_Figure_0.jpeg)

## Prediction Results | 2 years growth in China

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

## Prediction Results | 10 years growth in China

### 1<sup>st</sup> Report – Summary

## Predicting City Growth with Machine Learning

- Information transmission, computer service and software & Finance and Insurance were the two fastest-growing industries in China during the past 15 years
- Healthcare & Professional, scientific and technical services were the two fastest-growing industries in US during the past 15 years
- Zhengzhou, Guangzhou, Shenzhen, Zhuhai are predicted to be the fastest growing cities in the next 5-10 years

Machine Learning Tools Results Summary

Background Location

![](_page_19_Picture_5.jpeg)

![](_page_20_Picture_0.jpeg)

Machine learning offers a set of methods that outperform OLS in terms of out-of-sample prediction.

But: in most cases, ML methods are not directly applicable for research questions in econometrics and allied fields, especially when it comes to causal inference.

![](_page_20_Picture_3.jpeg)

How can we exploit the strengths of supervised ML (automatic model selection & prediction) for causal inference?

## City Growth Projection | Regression Model

Changes on Changes urban growth regression  $\Delta_{t+1,t} \log N_i = \beta_0 - \beta_I \Delta_{t+1,t} \log D_i + \epsilon_{it}$ 

Supposing the myopic adjustment process  $N_{it+1} = N_i^{*\lambda} N_{it}^{1-\lambda}$ , where  $N_i^*$  denotes the equilibrium steady-state population, we can interpret  $\lambda$  as the rate of convergence.

If  $\lambda = 0$ , there is no mobility, and if  $\lambda = 1$ , the population adjustment is immediate.

Taking logs and readjusting yields:

 $\Delta_{t+1,t} \log N_i = \lambda (\log N_i^* - \log N_{it})$ 

According to the spatial equilibrium condition,  $DN_i^*$  must be constant in steady state. Thus

 $\log N_i^* = \beta_0 - \beta_1 \log D_{it}$ 

## Estimation methods

- OLS: include all regressors and minimizes mean square errors.
- LASSO (Tibshirani 1996) with penalty level (lambda) selected by information criteria EBIC (Chen and Chen 2008): The lasso minimizes the residual sum of squares (RSS) subject to a constraint on the absolute size of coefficient estimates.
- Square-root LASSO (Belloni, Chernozhukov, and Wang 2011, 2014): The sqrt-lasso is a modification of the lasso that minimizes (RSS)^(1/2) instead of RSS.
- Both of these LASSO methods use CV.